

Updates on the Genetics of Neuroendocrine Tumors

NET Patient Conference March 8, 2019

Anna Raper, MS, CGC Division of Translational Medicine and Human Genetics

No disclosures

19,481 views | Dec 3, 2018, 09:32am

GSK Buys Tesaro For \$5 Billion In Dramatic Bet On Cancer Genetics

All of Us project seeks to analyze health, genetic data from 1 million Americans by 2024

Updated 9:39 AM; Posted 9:25 AM

Overview

- **1. Cancer/tumor genetics**
- 2. Genetics of neuroendocrine tumors

sciencemag.org

The Genetics of Cancers and Tumors

- Hereditary v. Familial v. Sporadic
- Germline v. somatic genetics
- Risk
- When to suspect hereditary susceptibility

Cancer Distribution - General

Hereditary (5-10%)

- Specific gene variant is inherited in family
- Associated with increased tumor/cancer risk

• Familial (10-20%)

- Multiple genes and environmental factors may be involved
- Some increased tumor/cancer risk

Sporadic

- Occurs by chance, or related to environmental factors
- General population tumor/cancer risk

Ē

What are genes again?

kintalk.org

Cancer is a genetic disease

kintalk.org

Germline v. Somatic gene mutations

 Cause cancer family syndromes

Somatic mutations

Somatic mutation (eg, breast)

- Occur in nongermline tissues
- Are nonheritable
- Acquired alterations common for all cancers

Ē

Hereditary susceptibility to cancer

- Germline mutations
- Depending on the gene, increased risk for certain tumor/cancer types
- Does not mean an individual WILL develop cancer, but could change screening and management recommendations

Genetic Architecture of Cancer Risk

National Cancer Institute

Features that raise suspicion for hereditary condition

- Specific tumor types
- Early ages of diagnosis compared to the general population
- Multiple or bilateral (affecting both sides) tumors
- Family history
 - Clustering of certain tumor types
 - Multiple generations affected
 - Multiple siblings affected

When is genetic testing offered?

- A hereditary condition has been identified in the family
- An individual's personal history and/or family history are suspicious for a hereditary predisposition to tumor development
- There is available genetic testing with sufficient sensitivity and specificity to be interpreted
- The test will impact the individual's diagnosis, management, and/or help to clarify risk in family members

Neuroendocrine tumor predisposition

- How often are neuroendocrine tumors associated with a hereditary susceptibility?
- Known NET predisposition syndromes
- Who should be referred

Likelihood of finding a hereditary predisposition - NETs

Dependent on tumor type

- Tumor types:
 - Pheochromocytomas and paragangliomas
 - Parathyroid adenomas
 - Thyroid cancer medullary specifically
 - Small intestine NETs
 - Pulmonary and thymus NETs
 - Gastroduodenopancreatic NETs

Crona and Skogseid, 2016

Multiple Endocrine Neoplasia Type 1

- Caused by pathogenic variants in the MEN1 gene
- Characterized by:

Ē

- Hyperparathyroidism
 - >95% of patients with MEN1
 - Typically diagnosed under the age of 50
- Pituitary adenomas
- GEP neuroendocrine tumors
 - Gastrinomas, ZES
 - Insulinomas, VIPoma, somatostatinoma, glucagonoma
 - Non-functional
- Skin findings
 - Angiofibromas
 - Collagenomas
 - Lipomas

Xia and Darling, 2006 Medscape mdanderson.org

Multiple Endocrine Neoplasia Type 2

- Hallmark feature is medullary thyroid carcinoma (MTC)
 - Typically younger age than in general population
 - More likely bilateral (both sides), multifocal (multiple lesions)
 - Associated with c-cell hyperplasia
- Caused by pathogenic variants in the RET gene
 - Type 2A

Ē

- Characterized by: MTC (95%), pheochromocytoma (50%) or parathyroid adenoma/hyperplasia (20-30%)
- Type 2B
 - Characterized by: very early MTC (100%), pheo (50%), specific physical exam findings and facial features
- Familial medullary thyroid carcinoma
 - Families with more than one individual diagnosed with medullary thyroid carcinoma in absence of pheochromocytoma or parathyroid disease

Crona and Skogseid, 2016

Von Hippel Lindau Syndrome

- Caused by pathogenic variants in the VHL gene
- Characterized by:
 - Hemangioblastomas benign, vascular tumors; prototypic lesion
 - Brain
 - Spinal cord
 - Retina (70% of individuals with VHL, mean age of detection 25 years)
 - Renal cysts and clear cell renal cell carcinoma
 - Pheochromocytoma
 - Endolymphatic sac tumors
 - Epididymal and broad ligament cysts
 - Pancreatic cysts
 - Pancreatic neuroendocrine tumors (5-17%)

Crona and Skogseid, 2016

Pheochromocytomas and paragangliomas

Tumors of the autonomic nervous system

- Pheochromocytomas (PCC)
 - Tumors that originate in the chromaffin cells in the adrenal medulla
- Paragangliomas (PGL)
 - Sympathetic: usually located retroperitoneal, but can be found in abdomen or thorax, usually <u>secrete</u> catecholamines
 - Also called "extra-adrenal pheochromocytoma"
 - Parasympathetic: usually in the head and neck region, generally biochemically silent (<u>non-</u> <u>secreting</u>)
- Up to 40% are associated with a hereditary cause

Source: D. L. Kasper, A. S. Fauci, S. L. Hauser, D. L. Longo, J. L. Jameson, J. Loscalzo: Harrison's Principles of Internal Medicine, 19th Edition. www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Head and Neck Paragangliomas (HNPGLs)

- Most cases of multiple HNPGL tumors have a genetic cause
- Solitary tumors have underlying genetic cause in 15 to 35%
- Highest likelihood in bilateral carotid body tumors

Laryngoscope Investig Otolaryngol. 2017 Dec; 2(6): 380-389

Ann Surg Oncol (2013) 20:1444–1450 DOI 10.1245/s10434-013-2942-5 Annals of SURGICALONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

ORIGINAL ARTICLE – ENDOCRINE TUMORS

Inherited Mutations in Pheochromocytoma and Paraganglioma: Why All Patients Should Be Offered Genetic Testing

Lauren Fishbein, MD, PhD¹, Shana Merrill, MS², Douglas L. Fraker, MD^{3,4}, Debbie L. Cohen, MD⁵, and Katherine L. Nathanson, MD^{2,4}

¹Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ²Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ³Division of Endocrine Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ⁴Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ⁵Renal, Electrolytes, and Hypertension Division, Department of Medicine, Perelman School of Pennsylvania, Philadelphia, PA; ⁵Renal, Electrolytes, and Hypertension Division, Department of Medicine, Perelman School of Medicine,

Genes associated with Hereditary PGL/PCC

Syndromic conditions (15-20% PGL/PCC)

- Majority: MEN2, VHL, Neurofibromatosis type 1
- 1% Polycythemia-paraganglioma-somatostatinoma syndrome (EPAS1 gene)
- 1% Hereditary Leiomyomatosis and Renal cell carcinoma (FH gene)

Hereditary PGL/PCC

• Succinate dehydrogenase genes (SDHA, SDHB, SDHC, SDHD, SDHAF2)

Favier et al, 2015

I≡

Gene	NET Characteristics	Mutation Frequency	Other Associations
SDHA	HNPGL, extra-adrenal PGL	<1%	GIST, RCC
SDHB	HNPGL, solitary PCC; extra-adrenal PGL, higher risk for metastatic disease	10%	RCC
SDHC	Primarily HNPGL; 10% in the thoracic cavity	1%	RCC
SDHD	Primarily HNPGL, extra-adrenal PGL, PCC; more likely to have multiple tumors	9%	RCC
SDHAF2	HNPGL	<0.1%	
TMEM127	PCC, rare PGL	1%	
MAX	PCC	1%	

Emerging gene associations

Gene	NET Characteristics
EGLN1	PCC
KIF1B	PCC
*MDH2	PGL/PCC
*DNMT3A	PGL/PCC

Genetics inMedicine

Ē

Article | Published: 08 May 2018

Gain-of-function mutations in DNMT3A in patients with paraganglioma

Laura Remacha BS, Maria Currás-Freixes MD, PhD, [...] Alberto Cas

, [...] Alberto Cas in Medicine | INVITED COMMENT

Genetics in Medicine 20, 1644–1651 (2018) Download Citation 🕹

Genetics inMedicine

Article | Published: 16 July 2018

Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma

● American College of Medical Genetics and Genomics 🛛 a Currás-Freixes MD, PhD, [...] Mercedes Robledo PhD 🗖

1652–1662 (2018) | Download Citation ↓

Discovery of new susceptibility genes: proceed cautiously

Tobias Else, MD¹ and Lauren Fishbein, MD, PhD²

Genetics in Medicine (2018) 20:1512-1514; https://doi.org/10.1038/s41436-018-0139-9

Inheritance

- Most conditions discussed inherited in Autosomal Dominant pattern
- Some conditions there is risk for disease if inherited paternally
 - e.g. SDHD, SDHAF2
- Testing of relatives recommended
 - Consider screening guidelines

Screening Guidelines

- Identifying susceptibility allows for targeted surveillance recommendations
 - Consider cost, time, risk/benefit, anxiety
- Well-established for certain conditions: VHL, MEN1, MEN2
 - Updated periodically, reviewed at follow-up appointments
- Evolving for hereditary PGL/PCC
 - New penetrance data
 - Penetrance = the proportion of individuals carrying a particular variant of a gene that express the associated trait

Lumenlearning.com

Penetrance of SDHx Pathogenic variants

- Previous risk estimates based on affected individuals (probands)
- Now collecting more data from family members

PPGL & HNPGL

Andrews et al, 2018

Ē

Penetrance of SDHx Pathogenic Variants

Risk estimates are evolving

Gene	Age	Penetrance of PGL/PCC – family members	Penetrance of PGL/PCC – proband and family members
SDHA	70	10%	50%
SDHB	60	22.5%	60.2%
SDHC	60	25%	75%
SDHD	60	50%	79%

Van der Tuin et al, 2018 Andrews et al, 2018

I've been referred to genetics, what now?

- Evaluation with a geneticist and/or genetic counselor
 - Review of medical history
 - Family history
 - Physical exam
 - Discussion of testing
- Sometimes a clinical diagnosis can be made
- Genetic testing via blood or saliva sample
 - Testing recommended based on personal and family history

Something has been identified, what now?

Screening and management discussion

• Follow-up periodically to review updates to recommendations

Familial testing

- Targeted for the same variant detected
- Depending on the gene, determines the age at which testing would be recommended

Review inheritance and reproductive options

- Prenatal testing
- Preimplantation genetic diagnosis with IVF
- Egg/sperm donation
- Adoption

Testing was recommended and was uninformative...

- Uninformative testing: Variants of unknown significance, normal test results
- Continue management with available clinical information
- Check back in with genetics every 2-3 years
 - Update personal and family history
 - Improvements in technology
 - New genes could be discovered
 - Variants can be re-classified

For sporadic cases, or no hereditary cause identified...

 For neuroendocrine tumors, no evidence that clinical screening family members is indicated

Summary

- Most cases of NETs are sporadic
- Consider genetics evaluation:
 - Anyone with a <u>paraganglioma or pheochromocytoma (up to 40% have</u> <u>an identifiable hereditary cause</u>)
 - If there is suspicion for a syndrome (e.g. MEN1, MEN2, VHL)
 - Multiple primary tumors
 - Family history
 - Known genetic predisposition syndrome
 - Most are autosomal dominant
 - Best to send genetic testing first for a known, affected individual
 - Early ages at diagnosis
 - Multiple generations affected
 - Multiple members of a generation affected
- Gene mutations are associated with prognostic implications and management decisions
- Research is ongoing

Penn Medical Genetics Neuroendocrine Team

- Geneticist: Katherine Nathanson, MD
- Nurse practitioner: Maria Bonanni, CRNP
- Genetic Counselors
 - Stephanie Asher, MS, CGC
 - Zoe Bogus, MS, CGC
 - Anna Raper, MS, CGC

Clinic coordinators

- Kara Welsh
- Danyel Branch
- Main office number: 215-662-4740

